Ghrelin signaling in human mesenteric arteries.
نویسندگان
چکیده
The hypothesis is that the ghrelin signal pathway consists of new participants including a local second mediator in human mesenteric arteries. The contractile force of isometric artery preparations was measured using a wire-myograph. Whole-cell patch clamp experiments were performed on freshly isolated single smooth muscle cells from the same tissue. After the addition of ghrelin (100 nmol) the outward potassium currents conducted through iberiotoxin-sensitive calcium-activated potassium channels with a large conductance were almost entirely abolished. The effect of ghrelin on potassium currents was insensitive to selective inhibitors of cAMP-dependent protein kinase and soluble guanylate cyclase, but was eliminated in the presence of des-octanoyl ghrelin and O-(octahydro-4,7-methano-1H-inden-5-yl) carbonopotassium dithioate (D-609). Ghrelin dose-dependently increased the force of contraction of native, endothelium-denuded and mostly of endothelium-denuded and treated with tetrodotoxin human mesenteric arteries preconstricted with 1 nmol endothelin-1. This effect of ghrelin was blocked when the bath solution contained 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126), 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2), D-609, 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide (GF109203x), pertussis toxin, 2-aminoethyl diphenylborinate (2-APB), indomethacin, (5Z,13E)-(9S,11S,15R)-9,15,Dihydroxy-11-fluoro-15-(2-indanyl)-16,17,18,19,20,pentanor-5,13-prostadienoic acid (AL-8810) - a non-selective prostanoid receptor antagonist, 5-(4-Chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazolo (SC-560) - a selective cyclooxygenase 1 inhibitor, ozagrel - a selective thromboxane A(2) synthase inhibitor or T prostanoid receptor antagonist GR32191B. It is concluded that ghrelin increases the force of contraction of human mesenteric arteries by a novel mechanism that involves Src kinase, mitogen-activated protein kinase kinase (MEK), cyclooxygenase 1 and T prostanoid receptor agonist, most probably thromboxane A(2).
منابع مشابه
Ghrelin suppression of potassium currents in smooth muscle cells of human mesenteric artery.
Ghrelin is a 28-amino acid peptide hormone which modulates many physiological functions including cardiovascular homeostasis. Here we report some novel findings about the action of ghrelin on smooth muscle cells (SMC) freshly isolated from human mesenteric arteries. Ghrelin (10(-7) mol/l) significantly suppressed the iberiotoxin-blockable component of potassium currents (I(K)) and depolarized t...
متن کاملGhrelin attenuates intestinal ischemia/reperfusion injury in mice by activating the mTOR signaling pathway.
Intestinal ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients, resulting in severe inflammation and remote organ damage. The activation of the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) signaling pathway exerts protective effect against ischemia/reperfusion injury. Ghrelin, an orexigenic hormone, inhibits the release of pro-inflammator...
متن کاملSites of action of ghrelin receptor ligands in cardiovascular control.
Circulating ghrelin reduces blood pressure, but the mechanism for this action is unknown. This study investigated whether ghrelin has direct vasodilator effects mediated through the growth hormone secretagogue receptor 1a (GHSR1a) and whether ghrelin reduces sympathetic nerve activity. Mice expressing enhanced green fluorescent protein under control of the promoter for growth hormone secretagog...
متن کاملAnalysis of the ghrelin receptor-independent vascular actions of ulimorelin.
Ulimorelin (TZP101) is a ghrelin receptor agonist that stimulates intestinal motility, but also reduces blood pressure in rodents and humans and dilates blood vessels. It has been proposed as a treatment for intestinal motility disorders. Here we investigated the mechanisms through which ulimorelin affects vascular diameter. Actions of ulimorelin on wall tension of rodent arteries were investig...
متن کاملSphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries
We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physiology and pharmacology : an official journal of the Polish Physiological Society
دوره 61 4 شماره
صفحات -
تاریخ انتشار 2010